Une équipe de chercheurs évryens et du site de Cergy, du laboratoire Lambe, démontre que le nanopore naturel d’aérolysine peut identifier des molécules quasiment identiques, miroirs l’une de l’autre, les « énantiomères » peptidiques. Ces changements de conformation sont souvent responsables de maladies ou au contraire de propriétés thérapeutiques. Avec 3 publications en à peine deux ans, l’équipe devient un des groupes leaders au monde sur la détection des biomarqueurs peptidiques, un enjeu majeur pour le diagnostic médical.
La conformation dans l’espace des protéines ou des petits peptides est déterminante pour leur activité biologique. Elle est en grande partie liée à l’enchaînement des acides aminés qui les constituent. Cependant, les scientifiques montrent que des différences beaucoup plus fines entre peptides de même séquence peuvent modifier leur activité et avoir des conséquences pathologiques. Il s’agit de la présence, dans ces molécules, d’acides aminés sous une forme rare dite « D », qui correspond à un positionnement des groupements chimiques en miroir par rapport à la forme « L » habituelle. Ces différences sont indétectables par les techniques usuelles comme la chromatographie en phase liquide à haute performance (HPLC) ou la spectrométrie de masse. Elles sont pourtant d’un grand intérêt médical.
L’équipe génopolitaine du professeur Juan Pelta, au Lambe (Laboratoire Analyse, Modélisation Matériaux pour la Biologie et l’Environnement), créée en 2007 grâce au programme Atige* de Genopole, est parvenue à identifier les deux formes énantiomères d’un peptide modèle, ainsi qu’une conformation particulière de ce peptide. Ils ont appliqué une méthode de détection en molécule unique via le nanopore naturel d’aérolysine qu’ils développent depuis plus de 12 ans. Le système détecte les signatures électriques de l’identité des biomolécules lors de leur passage, une par une, par un nanopore naturel d’aérolysine (cf. paragraphe ci-dessous « Quelques rappels sur la méthode Nanopore d’aérolysine »).
En 2023, les chercheurs avaient déjà démontré le potentiel du nanopore pour détecter des biomarqueurs de la coagulation, puis en janvier 2024 sa capacité à distinguer et quantifier, directement dans le sérum humain, deux kinines aux effets pathologiques ne différant que par un seul acide aminé. Avec ces derniers résultats publiés en mai 2024 dans la revue ACS Central Science, dont ils font la couverture, la méthode développée au Lambe démontre un niveau supérieur de précision.
L’équipe génopolitaine devient ainsi le groupe à avoir le plus publié sur les marqueurs peptidiques ces dernières années.
La méthode Nanopore détecte et quantifie les formes L et D de la vasopressine
Les chercheurs ont utilisé le modèle de la vasopressine, un peptide composé de 9 acides aminés, produit dans l’hypothalamus et impliqué dans la régulation de l’équilibre en eau et de la pression sanguine, aux conséquences diverses sur l’organisme (comportement social, mémoire, système vasculaire…). Il s’agit notamment d’un marqueur du diabète.
La molécule de vasopressine forme une boucle, créée par des ponts disulfures entre deux cystéines, suivie de 3 acides aminés terminaux dont une arginine de forme L (L-Arg-AVP). L’énantiomère D-Arg-AVP est synthétisé pour des fins de recherche ou pour ses propriétés thérapeutiques.
L’application de la méthode du nanopore d’aérolysine à l’analyse de solutions contenant soit la forme L, soit la forme D de la vasopressine produit des signatures électriques en partie chevauchantes, mais distinguables, à une tension électrique optimale de 110 mV (figure 1). En soumettant les résultats du passage dans le nanopore (intensité minimum et maximum de blocage du courant électrique, temps de séjour dans le nanopore…) à une analyse en composante principale, méthode statistique classique d’analyse de données, les chercheurs atteignent un taux d’identification de 99% pour chacune des deux formes.
L’équipe a ensuite testé des mélanges, équimolaires (1:1) ou non (proportions 1:3 et 3:1), des deux formes. Si l’analyse visuelle permet difficilement de différencier les signaux (cf. figure 1), l’analyse en composante principale associée à la prédiction de Monte Carlo, une méthode d’intelligence artificielle, discrimine les formes L et D du peptide (figure 2). Pour le mélange équimolaire, par exemple, le taux de succès est de 73%. Les 27% non identifiés peuvent être attribués au chevauchement partiel des signatures de L et D.
D’autre part, l’approche fournit une très bonne corrélation entre la proportion prédite dans le mélange et la proportion réelle (figure 2), démontrant le potentiel de la méthode pour un diagnostic quantitatif des biomarqueurs peptidiques. Les chercheurs ont par ailleurs réussi à détecter deux conformations prises par la vasopressine, dites « Open » et « Saddle » (en selle), dues à des liaisons modifiant la forme de la boucle, et ont retrouvé la proportion connue de ces deux structures 3D.
Quelques rappels sur la méthode Nanopore d’aérolysine
L’aérolysine a la propriété de former des pores nanométriques (< 2 nm de diamètre) dans les membranes cellulaires. Les scientifiques évryens et de Cergy ont inséré ce nanopore dans une membrane de lipides séparant deux compartiments remplis d’une solution électrolytique. Sous l’action d’un champ électrique, les molécules de la solution sont entraînées vers le nanopore et le traversent, une par une, bloquant ainsi partiellement et temporairement le courant ionique (cf. visuel). L’intensité de blocage du courant et le temps de séjour dans le nanopore dépendent de la taille, de la forme et de la charge des molécules, fournissant ainsi une signature électrique spécifique.
Vers un diagnostic de précision
L’équipe du Lambe a franchi un nouvel échelon dans la démonstration du potentiel de son approche Nanopore pour identifier en molécule unique des peptides de structure tridimensionnelle complexe. La méthode distingue différentes conformations, même très proches, et quantifie leur proportion dans un mélange.
La littérature scientifique révèle l’intérêt médical croissant des biomarqueurs peptidiques. Détecter leurs variations de séquences et de conformations représente également un enjeu de santé. Les travaux de l’équipe génopolitaine démontrent la diversité des pathologies couvertes par les biomarqueurs peptidiques : leurs trois dernières publications ont ainsi concerné des peptides liés à la coagulation sanguine et associés aux AVC, accidents cardiovasculaires et cancers, des kinines impliqués dans l’œdème de Quincke et le cancer du sein, et un antidiurétique marqueur notamment du diabète.