Onze ans après la publication de la première séquence de nos 23 chromosomes, dont le chromosome 14 déchiffré par la France dans le laboratoire Genoscope, la grande aventure du génome humain continue.
Jeudi 31 mars 2022, une avancée majeure fait la Une de la revue Science : les 8% du génome encore inconnus sont révélés par le consortium international Telomere-to-Telomere (T2T).
Christophe Lanneau, directeur du département Recherche et Plateformes à Genopole, apporte son éclairage.
Sous le nom de code GRCh38, la dernière séquence de référence du génome humain était un consensus de génomes différents qui avaient progressivement enrichi la toute première séquence établie en 2001. Néanmoins, 8% de notre génome restaient inaccessibles, car constitués de séquences hautement répétées que les techniques de séquençage* ne parvenaient pas à distinguer et ordonner.
Telomere-to-Telomere est parvenu à combler les lacunes en utilisant la capacité des nouvelles technologies de séquençage à lire des séquences de très grandes tailles. Créé en 2019, l’objectif du consortium scientifique était en effet de parvenir à lire chaque chromosome d’une extrémité (dite « télomère ») à l’autre, sans aucun trou dans la séquence.
Christophe Lanneau, directeur Genopole Recherche et Plateformes, fait l’analyse de cette avancée scientifique majeure :
« Cette nouvelle séquence de référence du génome humain, dite « CHM13 » est une carte d’une grande précision sur des parties qui renferment des parties dupliquées. Plus de 225 millions de paires de bases ont été ajoutées à notre génome qui en comporte 3,1 milliards. Jusqu’à présent, on n’accédait pas à ces séquences et on n’y prêtait pas suffisamment d’attention. On se rend compte aujourd’hui de leur importance pour notre fonctionnement cellulaire et de leur implication dans les maladies. Ce travail représente un progrès scientifique majeur.
Les séquences dupliquées sont regroupées pour l’essentiel dans des régions clés des chromosomes : les « centromères », régions centrales qui participent à la division cellulaire et garantissent une transmission correcte des chromosomes à chaque cellule fille, et les extrémités des bras chromosomiques, les télomères, qui raccourcissent avec l’âge cellulaire et régulent ainsi la durée de vie de nos cellules.
Pouvoir désormais explorer ces séquences donne la possibilité de découvrir la diversité génétique qu’elles renferment. Ces séquences auparavant cachées sont aussi la cible de modifications épigénétiques L’épigénétique est le mécanisme modifiant de manière réversible et transmissible l’ADN sans en changer la séquence nucléotidique, afin d’adapter l’expression des gènes à « l’environnement » ou la fonction de la cellule. On démontre de plus en plus son rôle dans le fonctionnement et l’adaptation de notre organisme.
Ainsi, il sera possible de générer des génomes en quelques heures en tirant partie de la vitesse des technologies NGS de Illumina, tout en bénéficiant de la qualité et exhaustivité de cette nouvelle séquence de référence pour comprendre et interpréter les séquences d’ADN. »
Le directeur du Centre national de Recherche en Génomique Humaine Jean-François Deleuze, interrogé par Le Figaro, souligne l’importance de ce travail pour « comprendre des mécanismes clés de la biologie. » Il précise : « Avec les méthodes actuelles de séquençage, seulement 50 % des maladies génétiques sont comprises. Nous allons donc peut-être enfin mieux expliquer certaines maladies orphelines. »